TMU

TOYO KEIKI

Multi-power meter

If you use this "TMU" multi-meter, you can measure 20 elements on the main display, and 17 elements on the sub-display.

TOYOKEIKI CO., LTD.

-Package display (4 elements) 23 elements can be displayed on the screen. High-speed digital operation system is adopted. Many elements are displayed on real time 1 screen with the combination by LCD display. Even when there is no lighting, it displays dearly with backlight.
-The same attachment as 110 wide angle meter. It possibleto replace, since it is the same size. (110type)

- It possible to measure active energy and reactive energy of out going and in coming.
-Harmonic measurement.
It possible to measure voltage distortion factor and current distortion factor.
-It possible to measure 4 times rated current.
Also in consideration of inrush current, it possible to measure up to 4 times of rated input current.
Bar graph of possiblescaling.
The bar graph can bescaling scaled.

Specification

Measurement item	Input range	Indication	Auxiliary power supply
Current (R,S,T)	0~5A (up to 20A)	Input aurrent \times CT ratio	```AC 80~264V : 6VA DC 80~143V : 3.5W (32mA) DC 19~ 31 V : 3.5W (150mA)```
Voltage (R-S,S-T,T-R)	$0 \sim 150 \mathrm{~V}$ or 0~300V (max 600V)	Input voltage $\times \mathrm{VT}$ ratio	
Active power	0~1kW or 0~2kW	Input active power \times CT ratio \times VT ratio	
Reactive power	LEAD 1kvar~0~LAG1kvar LEAD 2kvar~0~LAG2kvar	Input reactive power× CT ratiox VT ratio	
Power factor	LEAD 0~1~LAG 0	LEAD 0.0~100.0~LAG0.0 \%	Input rating and power consumption
Frequency	$45 \mathrm{~Hz} \sim 65 \mathrm{~Hz}$	$45.00 \sim 65.00 \mathrm{~Hz}$	$\begin{aligned} & \text { Current : } 5 \mathrm{~A}, 50 / 60 \mathrm{~Hz}, 0.5 \mathrm{VA} \\ & \text { Voltage : } 110 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 0.11 \mathrm{VA} \\ & 220 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 0.22 \mathrm{VA} \end{aligned}$
Watt demand	0~1kW or 0~2kW	Input watt demand \times CT ratio \times VT ratio	
Amp demand (R,S,T)	0~5A (up to 20A)	Input current \times CT ratio	
Activeenergy		$0.000 \sim 999999.999 \mathrm{kWh}$ (MWh)	
Reactiveenergy		$\begin{array}{ll} \hline \text { LAG } 0.000 \sim 999999.999 \text { kvarh (Mvarh) } \\ \text { LEAD } 0.000 \sim 999999.999 \text { kvarh (Mvarh) } \\ \hline \end{array}$	
VoltageTHD	$0 \sim 100 \%$, Peak value: $0 \sim 9.9 \mathrm{~A}$	$0 \sim 100 \%$	
Current THD	$\begin{aligned} & 0 \sim 100 \%, \text { Peak value: } \\ & 0 \sim 250 \mathrm{~V} \text { (Rated voltage } 110 \mathrm{~V} \text {) } \\ & 0 \sim 500 \mathrm{~V} \text { (Rated voltage } 220 \mathrm{~V} \text {) } \end{aligned}$	$0 \sim 100 \%$	
Operatingtime		$0 \sim 999999$ h	

Total: 23 measurements
Performance

Item	Speafication
Tolerance	 Frequency ㅈำ Adiveenergy ㅇำ
Effect of temperature	$\pm 0.3 \% / 10^{\circ} \mathrm{C}$
Responsetime	About 1 second
Insulation resistance	Over 100M Ω 500V DC
Withstand voltage	AC 2000V for 1 minute
Impulsetest	$6 \mathrm{kV} 1.2 / 50 \mu \mathrm{~s}$
Vibration \& shock	Vibration $10 \sim 55 \sim 10 \mathrm{~Hz} \quad 0.15 \mathrm{~mm}$ Shock 490m/S² XYZ positive and negative each 3 times.

Environment and structure

Item	Specification
Operating temp	$-10 \sim 55^{\circ} \mathrm{C}$
Storagetemp	$-20 \sim 70^{\circ} \mathrm{C}$
Humidity	Under 85% RH
Structure	Case
	Cover
	Terminal cover plameresistingABS
	Terminal screwbrass (M4,M3)
Weight	About 520 g
Display element	LCD
Protection rating	IP 40

Output specification

Analogoutput with limiter	DC4~20mA 0~550 DC1~5V 600 $\sim \infty$
Pulseoutput	Activeenergy or reactive energy DC 125V, AC 125V 0.1A MAX.4CH
Communication output	RS-485 2400~38.4kbps (MODBBUS)
Relay output	AC 250V 5A MAX.2CH

Control input specification (Remote control of main display)

Impressing voltage from the exterior can change the measurement item of a main display. Please impress the voltage of AC 85 -264V, or voltage of DC $80 \sim 143 V$.If it impress once, an item will move to next. Consumption current is about 2 mA .
However, this function is not provided in the spedification of analog(4ch), pulse(4ch), analog(2ch) + pulse (2ch) and analog(3ch) + pulse (1ch).

Control input specification (Alarm reset)

The alarm output can be cancelled by impressing voltage from the exterior. Please impress the voltage of AC 85~264V, or voltage of DC 80~143V. If it impress once, the alarm output is cancelled.
Consumption current is about 2 mA

TYPE NAME and SPEC No.

TMU

Note 1: If you select spec No.99, please consult with our company.
Note 2: "Instrument screen of viewing angle to upper" is an indicator expected to be an installation at a high position easily.
"Instrument screen of viewing angleto lower" is an indicator expected to be an installation at a low position easily.
Order Example

Typename	(1) Cirait	(2) Aux power supply	(3) Out put	(4) Viewing direction
TMU	$-\square \square$	$-\square$	$-\square \square$	$-\square$

Internal parameters can also be spedified at the time of order. TMU is carried out with the specified parameters.
The setting parameters, which can be specified, areCT ratio, VT ratio, and the demand time.
ExampleTMU-31-2-25-D
CT 100/5A, VT 3300/110V, Demand time 15 minutes
CH1-- Effective power $4 \sim 20 \mathrm{~mA}$
CH2 -- Current R phase $4 \sim 20 \mathrm{~mA}$
Pulse-- Watt-hour 10kWh/1 pulse

Parts name and accessories

Name of each part.

Setting item

jet each item numbe	Setting item	Setup contents
1	Primary voltage setup	Selection of VT
2	Primary current setup	Selection of CT
3	Main display setup	Selection of main display element
4	Sub-display setup	Display pattern selection and pattern editing of Sub-display
5	Bar graph-display setup	Selection of bar graph-display type
6	Setup of asetting point	Setting point (upper \&lower bound value) of each element is setup
7	Setup of demand alarm setting point	Setting of alarm reset mode, alarm value and element of alarm
8	Minimum value setup in range of measurement	Theminimum value of the voltage and the current is setup
9	Setup of Watt demand	Setting of demand time. Maximum and minimum demand value reset. Adjustment of demand start.
10	Setup of analog output	Setting of analog output element and measurement range of output.
11	Setup of pulseoutput	Setting of pulse output element and multiplier.
12	Setup of digital output	Setting of baud rate,transmission mode and data format, etc.
13	Setup of badk-light output	Selection of badk-light mode. (ON,OFF,AUTO OFF)
14	Setup of distribution key	Setting with distribution of display key of main and sub-display.
15	Setup of initial parameter	It returns tothe setting at thetime of factory shipments.
16	Reset of activeenergy and operating time	Reset of activeenergy , reactiveenergy and operating time.
17	Setup of activeenergy display	Setting of display multiplier of energy. Selection of outgoing reactiveenergy or incoming reactiveenergy.

It moves to a set each item

Fixation and cancellation of setting

| Setting item | Key operation | Explanation | The example of a display |
| :--- | :--- | :--- | :--- | :--- |
| Each setting | SET Key | －After changing set value，it is fixed by pushing the SET key．And it moves
 tothe set each item number input display． | Set each item number input display． |
| display | | After changing set value，a set value is canceled by pushing the DISPLAY
 key．And it moves totheset each item number input display． | |

Setting each item

Setting item	Key operation	Explanation	The example of a display
$\begin{array}{\|l\|} \hline \text { 1.Primary voltage } \\ \hline \text { setup } \\ \hline \end{array}$	\pm or - Key	－Selection of primary voltage is determined by pushing + or \square key． $\begin{aligned} & 110.0 \mathrm{~V} \rightarrow 110 \mathrm{~V} \rightarrow 220.0 \mathrm{~V} \rightarrow 220 \mathrm{~V} \rightarrow 440.0 \mathrm{~V} \rightarrow 440 \mathrm{~V} \rightarrow 1100 \mathrm{~V} \rightarrow 1.10 \mathrm{kV} \rightarrow 2200 \mathrm{~V} \\ & \rightarrow 2.20 \mathrm{kV} \rightarrow 3300 \mathrm{~V} \rightarrow 3.30 \mathrm{kV} \rightarrow 6600 \mathrm{~V} \rightarrow 6.60 \mathrm{kV} \rightarrow 11.00 \mathrm{kV} \rightarrow 22.00 \mathrm{kV} \rightarrow \\ & 33.00 \mathrm{kV} \rightarrow 66.00 \mathrm{kV} \rightarrow 77.00 \mathrm{kV} \end{aligned}$	Primary voltage setup
$\begin{array}{\|l\|} \hline \text { 2.Primary } \\ \hline \text { aurrent setup } \\ \hline \end{array}$	\pm or - Key	－Selection of primary current is determined by pushing \dagger or \square key． $\begin{aligned} & 5.00 \mathrm{~A} \rightarrow 6.00 \mathrm{~A} \rightarrow 7.50 \mathrm{~A} \rightarrow 8.00 \mathrm{~A} \rightarrow 10.00 \mathrm{~A} \rightarrow 10.0 \mathrm{~A} \rightarrow 12.00 \mathrm{~A} \rightarrow 12.0 \mathrm{~A} \rightarrow 15.00 \mathrm{~A} \rightarrow \\ & 15.0 \mathrm{~A} \rightarrow 20.00 \mathrm{~A} \rightarrow 20.0 \mathrm{~A} \rightarrow 25.00 \mathrm{~A} \rightarrow 25.0 \mathrm{~A} \rightarrow 30.00 \mathrm{~A} \rightarrow 30.0 \mathrm{~A} \rightarrow 40.00 \mathrm{~A} \rightarrow 40.0 \mathrm{~A} \\ & \rightarrow 50.00 \mathrm{~A} \rightarrow 60.00 \mathrm{~A} \rightarrow 75.00 \mathrm{~A} \rightarrow 80.00 \mathrm{~A} \rightarrow 100.0 \mathrm{~A} \rightarrow 100 \mathrm{~A} \rightarrow 120.0 \mathrm{~A} \rightarrow 120 \mathrm{~A} \rightarrow \\ & 150.0 \mathrm{~A} \rightarrow 150 \mathrm{~A} \rightarrow 200.0 \mathrm{~A} \rightarrow 200 \mathrm{~A} \rightarrow 250.0 \mathrm{~A} \rightarrow 250 \mathrm{~A} \rightarrow 300.0 \mathrm{~A} \rightarrow 300 \mathrm{~A} \rightarrow 400.0 \mathrm{~A} \\ & \rightarrow 400 \mathrm{~A} \rightarrow 500.0 \mathrm{~A} \rightarrow 600.0 \mathrm{~A} \rightarrow 750.0 \mathrm{~A} \rightarrow 800.0 \mathrm{~A} \rightarrow 1000 \mathrm{~A} \rightarrow 1.00 \mathrm{kA} \rightarrow 1200 \mathrm{~A} \rightarrow \\ & 1.20 \mathrm{kA} \rightarrow 1500 \mathrm{~A} \rightarrow 1.50 \mathrm{kA} \rightarrow 2000 \mathrm{~A} \rightarrow 2.00 \mathrm{kA} \rightarrow 2500 \mathrm{~A} \rightarrow 2.50 \mathrm{kA} \rightarrow 3000 \mathrm{~A} \rightarrow \\ & 3.00 \mathrm{kA} \rightarrow 4000 \mathrm{~A} \rightarrow 4.00 \mathrm{kA} \rightarrow 5000 \mathrm{~A} \rightarrow 5.00 \mathrm{kA} \rightarrow 6000 \mathrm{~A} \rightarrow 6.00 \mathrm{kA} \rightarrow 7500 \mathrm{~A} \rightarrow \\ & 7.50 \mathrm{kA} \rightarrow 8000 \mathrm{~A} \rightarrow 8.00 \mathrm{kA} \end{aligned}$	Primary current setup
$\begin{aligned} & \text { 3.Main Display } \\ & \text { Setup } \end{aligned}$	＋or－Key	－You can choice the element，what you want to measure on themain display． －Pushing the + key makes the element appear and pushing the key makes the element disappear．If \square or \square key is pushed，next element displayed on the main display．The unit currently displayed shows the element，which you want to set．	Main Display Setup $\begin{aligned} & \text { Erl } \\ & \text { EINU } \end{aligned}$ \mid
$\begin{aligned} & \text { 4. Sub-Display } \\ & \hline \text { Setup } \\ & \hline \end{aligned}$ Selection of menu		－You can select and edit the display pattern of Sub－display is done． －Either SEL（Pattern selection）or EDIT（Pattern editing）is selected． The selected item blinks． －It moves to a set up of by selected item pushing NEXT key．	Selection of sub－display menu
Selection of pattern	+ or \square Key	－The pattern to be selected currently is displayed on the main display． －The display pattern is selected by pushing + or \square key． －There are eight kinds of patterns that can be selected，that is user edit pattern and＂0～6＂display pattern．（There are only user edit pattern and ＂ 0 ＂display pattern for 1P2W．）Refer to P13．	Selection of sub－display pattern \|

Continues to the next page．

Continues to the next page.

Setting item	Key operation	Explanation	The example of a display
7.Setup of alarm output setting		- Alarm output(relay contact) turned "ON" when the input signal exceeds alarm setting point(relay point of contact) and ALARM lights appears on the display. And, the display is blinked. - It displays alarm output CH on the 1st sub-display, and high setting ("H") or low setting point("L") on the 2nd sub-display, and return mode on the 3rd sub-display. - Select the element of alarm by pushing the \square or \square key. (Line to line voltage \rightarrow line to line voltage OR mode \rightarrow (line to neutral voltage \rightarrow line to neutral voltage OR mode] \rightarrow arrrent \rightarrow arrrent OR mode \rightarrow active power \rightarrow reactive power \rightarrow power factor \rightarrow frequency \rightarrow watt demand \rightarrow amp demand \rightarrow amp demand OR mode \rightarrow aurrent THD \rightarrow aurrent THD OR mode \rightarrow voltageTHD \rightarrow voltage THD OR mode (In parentheses [] ,3P4W types.) - It move to the selection of high setting point or low setting point by pushing NEXT key. The state of the setting point is displayed on the 2nd subdisplay. - Either high setting point("H") or low setting point('L') is selected by pushing + or \square key. - It moves to set alarm value by pushing NEXT key. A present alarm value is displayed on the main-display. - Alarm value is sharing with a set value of setting indicator. - If the \dagger key is pushed, the alarm value increase. By pushing \square key, the value decrease. - If the NEXT key is pushed, it will move to a setup of the return time. The state of the return time is displayed on the 3rd sub-display. - The return time is selected by pushing \square or \square key. Select the return time value (OFF,0,5,10,15,20,30,60,90) 0(zero)is instantaneous output,OFF is manual reset. - At two alarm outputs type, it moves to 2CH alarm setting. The setting method is the abovementioned and is same.	Setup of alarm output setting
$\begin{aligned} & \text { 8.Minimum value } \\ & \hline \text { setup } \\ & \hline \end{aligned}$		- Minimum value setting for voltage and current. The screen displays " 0 "(ZERO) below with setting value for voltage and current. - The display of other elements is as speified in the following table. Example: If you set the point as 90 V , "0" is displayed on the screen under 90V. - If the \square key is pushed, the voltage value increase. By pressing \square key, the value decrease. - If NEXT key is pushed, it will move to current value setup. - If the \dagger key is pushed, the voltage value increase. By pressing \square key, the value decrease.	Minimum value setup
9.Demand setup		- Demand time setting, reset of a maximum and a minimum demand, and adjusting of demand start. 1st sub-display : demand time 2nd sub-display : demand reset 3rd sub-display : adjustment of demand start. - Please select a setting item by pushing + or \square key. Selected item blinks. - It moves to the selected set item by pushing NEXT key. - The present demand time is displayed on the main display.	Demanditem

Setting item	Key operation	Explanation	The example of a display
		- If the NEXT key is pushed, it will move to selection of multiplier indication mode. Multiplier indication is blinking on the screen. - Selection of multiplier indication is determined by pushing + or $-\square$ key. It selects among $0.01 \mathrm{kWh}, 0.1 \mathrm{kWh}, 1 \mathrm{kWh}, 10 \mathrm{kWh}, 100 \mathrm{kWh}, 1 \mathrm{MWh}, 10$ MWh, 100 MWh. - It moves to a setup of 2dh at more outputs. - Please set only output ch according to the same procedure. (Note) The same measurement element can be output to more ch. However, multiplier indication becomes common in that case.	Pulseoutput ch1 setup - \quad Tiremp Chi
$\begin{array}{\|l\|} \hline \text { 12.Digital } \\ \hline \hline \text { Output Setup } \\ \hline \end{array}$		- Setting of digital output mode(RS-485). - Selection of transmission mode is determined by pushing + or - key. (RTU mode or ASCII mode) - If the NEXT key is pushed, it will moveto baud rate set-up mode. - Selection of baud rate is determined by pushing + or \square key (2400, $4800,9600,19.2 \mathrm{k}$ or 38.4 k) - If the NEXT key is pushed, it will moveto parity bit set-up mode. - Setting of parity bit is determined by pushing $+\square$ or \square key. - If the NEXT key is pushed, it will move to address set-up mode. - Setting of address is determined by pushing + or \square key. Communication address can be set only $1 \sim 247$. - If the NEXT key is pushed, it will move to the transmission data format of watt-hour and var-hour. - Selection of data size of watt-hour and var-hour by pushing $+\square$ or \square key.(2word,4word) - If the NEXT key is pushed, it will move to data type setup mode at selection of 2word data length. - Selection of data type by pushing \dagger or \square key.(BCD,HEX) - If the NEXT key is pushed, it will move to LRC(error check code) type setup mode. LRC:check sum. - Selection of LRC type by pushing \square or \square key. Please select either PAT1 or PAT2. PAT1:calculate LRC before converting +0ASC II code. PAT2:calculate LRC after converting +0ASC II code. - If the NEXT key is pushed, It will move to the multiplier indication setting of transmission data of Wh and Varh at selection of 2 word data length. At selection of 4 word data length the unit of Wh and Varh is fixed to $0.001 \mathrm{kWh}($ Varh $)$. - Selection of multiplier indication is determined by pushing \square or \square key. It selects among $0.001 \mathrm{kWh}, 0.01 \mathrm{kWh}, 0.1 \mathrm{kWh}, 1 \mathrm{kWh}, 10 \mathrm{kWh}, 100 \mathrm{kWh}$, $1 \mathrm{MWh}, 10 \mathrm{MWh}, 100 \mathrm{MWh}$.	Transmission mode setup No. 1 Transmission mode setup No. 2
$\begin{aligned} & \text { 13.Back Light } \\ & \hline \text { Setup } \end{aligned}$	+ or - Key	- Setting of back light mode. - Setting of back-light mode is determined by pushing + or The mode is chosen from 3 kinds. (ON, OFF, AUTO OFF) AUTO OFF: The light is put out after 3 minutes automatically.	Back light setup \mid

Setting item	Key operation	Explanation				The example of a display
$\begin{array}{\|l\|} \hline \text { 14.Distribution } \\ \hline \text { Key Setup } \\ \hline \end{array}$	+ or $-\square$ Key	- Selection of key allocation by pushing ++ or $\boxed{-}$ key. NORM : DISPLAY key : Main display NEXT key : Sub-display EXCG : Setting opposite to the above-mentioned case.				Distribution of key setup 自巨
$\begin{array}{\|l\|} \hline \text { 15.Initial setup of } \\ \hline \text { setting parameter } \\ \hline \end{array}$	SET Key (3sec) DISPLAY Key	- All the parameters of an initial setting are returned to the shipment condition. When setting operation gets confused, please initialize by the operation shown below. - The blinking character ("INIT") is displayed on the main display. - If the SET key is pushed for 3 seconds, setup parameters will return to value of shipments. Please set up from the beginning. - If DISPLAY key is pushed, it will return to a setting item number input display without initializing.				Initial setup of setting parameter
16.Watt-hour and adjusting time are reset		- Please reset watt-hour and operating time. - Wh unit is displayed on the 1st sub-display. And "TIME" is displayed on the 2nd sub-display. - Either watt-hour or operating time is selected by pushing + or \square key. The selected item blinks. - Please decide the reset element. - If the \square key is pushed for 3 seconds, The selected items is reset. When you reset watt-hour, var-hour is reset at the sametime.				Watt-hour and adjusting time are reset $\begin{aligned} & \text { CEE } \\ & \text { HEN } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { 17.Watt-hour } \\ \hline \text { display setup } \\ \hline \end{array}$		- Please setup watt-hour (var-hour) display setup multiplier indication. - The display multiplier of watt-hour (var-hour) is set and either outgoing var-hour or incoming var-hour is selected. - The present multiplier of watt-hour (var-hour) is displayed on the 1st subdisplay. - Selection of multiplier indication is determined by pushing \square or \square key. Select among AUTO, $1 \mathrm{kWh}, 10 \mathrm{kWh}, 100 \mathrm{kWh}, 1 \mathrm{MWh}, 10 \mathrm{MWh}, 100$ MWh . Multiplier for AUTO P : Rated power value. - It move to the selection of outgoing varh or incoming varh. - Please select whether to measure var-hour of incomming or outgoing by pushing + or \square key. No sign on the 1st sub-display shows incoming. And "-" sign shows outgoing.				Watt-hour display setup \qquad Setup of in comming and out going of var-hour $-\mathrm{Cimb}$

Manual reset of alarm output

Alarm output is maintained until the operation is performed when (manual) return mode is selected.
Alarm output reset is performed according to the following key operation.

Setting item	Key operation	Explanation
Alarm output	SET ++ Key	• Pushing SET key and + key simultaneously reset alarm output.
reset		

Setting value of factory shipments

Item	Setting		Item	Setting value	Item	Setting value	
VT ratio	3 phase 6600 V1 phase		Setting indicator	Max voltage value:7260 V (3 phase)110.0 V (1 phase)Min voltage value:5940 V (3 phase)90.0 V (1 phase)Others element: OFF	Distribution of key	DISPLAY key: Changefor main-display NEXT key: Changefor sub-display	
			Analogoutput		CH1: Current (S) CH2: EffectivePower CH3: Voltage(RS) CH4: Frequency		
CT ratio	3 phase 1 phase	$\begin{aligned} & 100 \mathrm{~A} \\ & 100 \mathrm{~A} \end{aligned}$		Alarm output	CH1: Watt demand, setting point 960 kW , manual reset CH 2: Amp demand, setting point 80.0A, manual reset	Pulseoutput	CH1 : Incomming / kWh / pulse CH2 : Outgoing / kWh / pulse CH3:LAG/kvarh/pulse CH4:LEAD/kvarh/pulse
Main-display element	All eler	t displays	Minimum value of range	1.5\% of rated voltage 2\% of rated current	Communication parameter	Baud rate: 9600 Parity: Non parity Address: 01 Mode: ASCII Data size: 2word Data type: BCD LRC type: PAT1 Multiplier of activeenergy: 1kWh	
Sub-display element	All element displays		Demand time	30 minutes			
Bar graph-display	Voltage: deviation scale Current : real scale Active power : real scale Reactive power : real scale Power factor : - $0 \sim 100$ ~ 0\% Frequency: 45~65Hz						
			Mode of back-light	Auto off mode			
			Active energydisplay	Multiplier: AUTO Reactive energy : Incomming			

Operation explanation

Changing of main display

- If the DISPLAY key is pushed, the measurement appears on main display in order.
- If the DISPLAY key and \square key are pushed simultaneously, the measurement appears on main display in reverse. The display screen sequences are as follow.

3P4W (23 elements)

line to line voltage $(R S, S T, T R) \rightarrow$ line to neutral voltage $(R N, S N, T N) \rightarrow$ urrent $(R, S, T) \rightarrow$ watt $\rightarrow v a r \rightarrow$ power factor $\rightarrow f r e q u e n c y \rightarrow W a t t ~ d e m a n d ~ \rightarrow A m p ~$ demand $(\mathrm{R}, \mathrm{S}, \mathrm{T}) \rightarrow$ aurrent $\operatorname{THD}(\mathrm{R}, \mathrm{S}, \mathrm{T}) \rightarrow$ voltageTHD $(\mathrm{RS}, \mathrm{ST}, \mathrm{TR})-$

3P3W (20 elements)
\rightarrow line to line voltage $(R S, S T, T R) \rightarrow$ arrent $(R, S, T) \rightarrow$ watt \rightarrow var \rightarrow power factor \rightarrow frequency \rightarrow Watt demand $\rightarrow A m p$ demand $(R, S, T) \rightarrow$ urrent $T H D(R, S, T) \rightarrow$ voltageTHD (RS, ST, TR $) \longrightarrow$

1P3W (20 elements)
\rightarrow voltage $(R N, T N, R T) \rightarrow$ arrent $(R, N, T) \rightarrow$ watt $\rightarrow \operatorname{var} \rightarrow$ power factor \rightarrow frequency \rightarrow Watt demand $\rightarrow A m p$ demand $(R, N, T) \rightarrow$ arrent $T H D(R, N, T) \rightarrow v o l t a g e$ THD (RN, TN,RT) \longrightarrow

1P2W (10 elements)
\rightarrow voltage $(R N) \rightarrow$ aurrent $(R) \rightarrow$ watt \rightarrow var \rightarrow power factor \rightarrow frequency \rightarrow Watt demand \rightarrow Amp demand $(R) \rightarrow$ arrent $T H D(R) \rightarrow$ voltage $T H D(R N)$ \qquad

- Measurements on the main display, which are no use, can be disappeared.

Measurements, which are disappeared on the main display, are skipped at thetime of a display changing.
Example: Only Wh and varh are selected to display. Theelements what you want to indicate on the main display can be selected by method at page 5 .

Autoscan of themain display

- If the DISPLAY key is pushed for 3 seconds, the screen displays under the condition of auto scan mode. Measurements change in order for every 1 -second. (Measurements by which mask processing were carried out are skipped.)
Auto scan will be stopped if DISPLAY key is pushed once again.
Change of a sub-display
If the NEXT key is pushed, sub-display (from 1 to 3) changes simultaneously. The combination and the change order of sub-display are as follows.
ALSO arbitrary measurements can be displayed on the arbitrary position by method at page 5 . If the NEXT key and \square key are pushed simultaneously, the measurement change in reverse
-3P3W, 3P4W and 1P3W (S phase is exchanged for N phase)

Incomming Wh	$\begin{gathered} \rightarrow \\ \leftarrow \end{gathered}$	Outgoing Wh	$\begin{gathered} \rightarrow \\ \leftarrow \end{gathered}$	LAG reactiveenergy	$\begin{gathered} \rightarrow \\ \leftarrow \end{gathered}$	LEAD reactiveenergy	\rightarrow	Operating time
Active power		-		Reactive power		-		-
Frequency		-		Power factor		-		-

The element that is endosed with the dotted line is adapted to 3P4W.
In the case of other input type.
It is skipped.
-1P2W

Sub-display 1	Voltage(RN)	\rightarrow	Max watt demand	\rightarrow	Maxam	(R)	$\begin{aligned} & \rightarrow \\ & \leftarrow \end{aligned}$	Incomming Wh
Sub-display 2	Current (R)		Min watt demand		Min an	R)		Active power
Sub-display 3	Activepower		Watt		Current	(R)		Frequency

Outgoing watt	\rightarrow	LAG reactiveenergy	\rightarrow	LEAD reactiveenergy	$\begin{gathered} \rightarrow \\ \leftarrow \end{gathered}$	Operating time
-		Reactive power		-		-
-		Power factor		-		-

If you want to display other pattern and edit arbitrary pattern, please refer to page5.

【Pattern of sub-display】
It is possible to select it from six patterns besides PATO(all elements).
Moreover, an arbitrary display pattern can beedited, and be displayed.

* Remarks : Only "PAT0" in the case of 1P2W.
- 3P3W and 1P3W (S phase is exchanged for N phase)

PAGE	PAT 0	PAT 1	PAT 2	PAT 3	PAT 4	PAT 5	PAT 6	User's pattern
1	Voltage (RS) Voltage (ST) Voltage (TR)	Voltage (RS) Voltage (ST) Voltage (TR)	Voltage (RS) Voltage (ST) Voltage(TR)	Voltage (RS) Voltage(ST) Voltage(TR)	Voltage(RS) Voltage(ST) Voltage(TR)	Voltage (RS) Voltage(ST) Voltage(TR)	Voltage (RS) Voltage(ST) Voltage(TR)	* 1
2	Current (R) Current (S) Current (T)	Current (R) Current (S) Current (T)	Current (R) Current (S) Current (T)	$\begin{aligned} & \hline \text { Current (R) } \\ & \text { Current (S) } \\ & \text { Current (T) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Current (R) } \\ & \text { Current (S) } \\ & \text { Current (T) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Current (R) } \\ & \text { Current (S) } \\ & \text { Current (T) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Current (R) } \\ & \text { Current (S) } \\ & \text { Current (T) } \\ & \hline \end{aligned}$	* 1
3	Max watt demand Min watt demand Watt demand	Reactive power Power factor Frequency	Reactive power Power factor Frequency	Reactive power Power factor Frequency	Max watt demand Min watt demand Watt demand	Reactive power Power factor Frequency	Incomming Wh Active power Reactive power	* 1
4	Max amp demand (R) Max amp demand (R) Amp demand	Incomming Wh Active power -	Incomming Wh Activepower \square	Incomming Wh Watt demand Active power	Max amp demand (R) MaxAmp demand (R) Amp demand	Operating time Reactivepower	LAG var-hour	* 1
5	Max amp demand (S) Max amp demand (S) Amp demand		Outgoing Wh	LAG var-hour	Max amp demand (S) MaxAmp demand (S) Amp demand		Operating time	* 1
6	Max amp demand (T) Max amp demand (T) Amp demand			LEAD var-hour	Max amp demand (T) MaxAmp demand (T) Amp demand (T)			* 1
7	Incomming Wh Adtive power Frequency							* 1
8	Outgoing Wh							* 1
9	LAG var-hour Reactive power Power factor							* 1

Continues to the next page.

PAGE	PAT 0	PAT 1	PAT 2	PAT 3	PAT 4	PAT 5	PAT 6	User's pattern
10	LEAD var-hour - -					$* 1$		
11	Operatingtime - -						$* 1$	

PAGE	PAT 0	PAT 1	PAT 2	PAT 3	PAT 4	PAT 5	PAT 6	User's pattern
1	Voltage(RS) Voltage (ST) Voltage (TR)	Voltage (RS) Voltage (ST) Voltage (TR)	Voltage(RS) Voltage (ST) Voltage (TR)	Voltage (RS) Voltage (ST) Voltage(TR)	Voltage(RS) Voltage (ST) Voltage (TR)	Voltage(RS) Voltage (ST) Voltage(TR)	Voltage(RS) Voltage (ST) Voltage(TR)	*1
2	Voltage (RN) Voltage (SN) Voltage (TN)	Current (R) Current (S) Current (T)	Current (R) Current (S) Current (T)	Current (R) Current (S) Current (T)	Current (R) Current (S) Current (T)	Current (R) Current (S) Current (T)	Current (R) Current (S) Current (T)	*1
3	Current (R) Current (S) Current (T)	Reactive power Power factor Frequency	Reactive power Power factor Frequency	Reactive power Power factor Frequency	Max watt demand Min watt demand Watt demand	Reactive power Power factor Frequency	Incomming Wh Active power Reactive power	*1
4	Max watt demand Min watt demand Watt demand	Incomming Wh Active power -	Incomming Wh Active power	Incomming Wh Watt demand Active power	Max amp demand (R) MaxAmp demand (R) Amp demand	Operating time Reactive power	LAG var-hour	*1
5	Max amp demand (R) Max amp demand (R) Amp demand		Outgoing Wh -	LAG var-hour	Max amp demand (S) Max Amp demand (S) Amp demand		Operating time -	*1
6	Max amp demand (S) Max amp demand (S) Amp demand			LEAD var-hour -	Max amp demand (T) MaxAmp demand (T) Amp demand (T)			*1
7	Max amp demand (T) Max amp demand (T) Amp demand							
8	Incomming Wh Active power Frequency							*1
9	Outgoing Wh							*1
10	LAG var-hour Reactive power Power factor							*1
11	LAED var-hour -							*1
12	Operating time -							*1

1P2W

PAGE	PAT 0	PAT 1	PAT 2	PAT 3	PAT 4	PAT 5	PAT 6
1	Voltage(RS) Voltage (ST) Voltage(TR)					User's pattern	
2	Max watt demand Min watt demand Watt demand					$* 1$	
3	Maxamp demand (R) Max amp demand (R) Amp demand (R)					$* 1$	
4	Incomming Wh Activepower Frequency					$* 1$	
5	OutgoingWh -					$* 1$	
6	LAG var-hour Reactivepower Power factor					$* 1$	

[^0]| PAGE | PAT 0 | PAT 1 | PAT 2 | PAT 3 | PAT 4 | PAT 5 | PAT 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | LEAD var-hour
 -
 - | | | | $*$ | | |
| 8 | Operatingtime
 -
 - | | | | $* 1$ | | |

* 1 An arbitrary element can be set. But there is constrain as follows.
- It is allowed to display watt-hour, var-hour and operatingtime only on 1st sud-display.
- It is allowed to display max demand only 1st sub-display and min demand only 2nd sub-display.
- In the case of 1P2W you select either PAT 0 on user's pattern.

Watt-hour and var-hour digit feeding
(If you want to check the detail (under decimal point) of Watt-hour and var-hour, you can chedk it by the method as follow.)
(1) Select the measurement on main display. (watt-hour or var-hour)
(2) While pushing both + and $\boxed{-}$ keys at the same time allows to feed the digit readout 6 to 9 digit. After detached the key, it will return to a normal display.

Installation and wiring

Chedk of aproduct

Spedifications of inputs, an auxiliary power supply, and outputs are marked on the product. Please chedk that it is in agreement with the spedification of your demand.

Installation environment
Installation environment influences the performance of a product. Please refer to thefollowing and select installation environment.
(1) Surrounding temperature, humidity.

Please avoid high temperature, a humind if possible, in any at the time of transportation, storage and use.
(2) Please avoid a continuous vibration and a shock in the use.
(3) When used in a special environment, please contact our.

Installation

(1) Attachment position

The display screen of this product is using the liquid-crystal-display(LCD).
A LCD changes contrast with the angle to see. We prepare the two type LCD with the different angle to see.
Please determine selection of type and an installation position for the right figure as reference.
Instrument screen of viewing angle to upper is advantageous to install in a position a little higher than eyelevel in respect of contrast. And instrument screen of viewing angle to lower is advantageous to install in a position a little lower than eye-level in respect of contrast.
(2) Installation

Please attach by referring to the panel aut of an outside size (* * page), and process a hole.
When you attach adjacently, please take 115mm leftward, take the interval of 125 mm or more in the vertical direction.
The depth direction should take a margin in consideration of the drawer of a cable.

Connection

Please connect correctly according to a connection figure.

(1) If it is made to rotate counterdockwise, it will separate from a terminal cover.

After a connection end should attach a terminal cover as before.
As for theterminal cover, the vertical direction was decided. Please attach in the direction which can read a terminal number correctly.
(2) In an input terminal and a power supply terminal, the object for M4 and an output terminal should prepare the object for M3.
(3) It is recommended that one of CT's, VT's secondary terminals should ground for safety (refer to wiring fig).
(4) Be sure to ground an earth terminal(No. 7 terminal) for safety and stability of operation.
(5) In the case of product with DC 24 V power supply, it has polarity in the auxiliary powerterminal. If you are connected on the contrary, it does not power on.
(6) Pleasetake a margin for cable diameter. You need to select a cable that is permitted for overcurrent.
(7) In the case of product with outputs, please dissociate output wiring from wiring to inputs, a power supply, a power line, etc., and wiring for output signal should use shielding wire or twisted pair wire if needed.
(8) External remote(or reset) inputs operate by impressing voltage.

Please prepare the power supply of AC 80-264V or DC 80-143V.
An auxiliary power supply can be used commonly. The internal structure is as follows. When not using a reset terminal, leave open dircuit. The consumption current of the remote input is about 1 mA at 100 V a.c. or dc.

Terminal number
external remoteinput : 20, 21
reset input
: 16, 17
(9) An alarm output'dircuit is following. Please use it within the rated voltage and current, and if necessary, use surge absorb devices in external.
(10) Please connect nothing to non-connection terminals. When you do not use an output terminal and/or a remote terminal, Please leave to opening. For the product has carrent output, if you do not use the output, it is not necessary to connect together. When a product with a digital transmission output which does not use, please leave to opening.
(11) Connection should check having tightened the screw certainly and it should surely a terminal cover.

Troubleshooting information when a trouble occurs, please check the following table to reference.

Condition	Check point
It is hard to seea display.	(1) The liquid-crystal-display(LCD) is used a display. A LCD has a thing hard to see depending on the direction to see. It is designed so that it may become legible towards looking up at the front of the display. On the contrary, towards looking down, it becomes a little hard to see. (2) The contrast of LCD worsens in the environment where temperature is high(45 degrees C or more). I will recover, if temperature falls.
A display blinks.	If an input value exceeds the set point of a setting indicator, a display will blink. Please check theset point.
The back light went off.	If you push the DISPLAY key switch, dosea back light turn on? A back light can be chosen from thefollowing mode by initial setting. - The light is turned on at all times. - A back light does not useit. - The light is switched on for 3 minutes after key operation, and turn off automatically. In setting change, please see the 13. Back light
ERROR01 had been displayed.	Abnormalities were discovered by RAM inside a product. Since you cannot use it is, please contact our.
ERROR02 had been displayed.	Abnormalities were discovered by program inside a product. Since you cannot use it as it is, please contact our.
ERROR03 had been displayed.	Abnormalities were discovered by data of the nonvolatile memory inside a product. Since you cannot use it us it is, please contact our.

Dimensions

panel cut-out

TOYO KEIKI CO．，LTD．

Head Office
17－10－3，Shimosinjyou，Higashiyodogawa－Ku，Osaka，J apan．
〒533－0021 TEL．06（6329） 2441 FAX 06（6328） 4112
Tokyo Office．
8－47－27，Shin－Yoshidahigashi，Kohhoku－Ku，Yokohama．
〒 223－0058 TEL． $045(542$ ） 8201 FAX． 045 （541）3989
Nagoya Office
SI Bldg．6F，1－7－32，Nishiki，Naka－Ku，Nagoya．
〒460－0003 TEL．052（219） 7780 FAX．052（219） 7781
Osaka Factory
17－10－3，Shimosinjyou，Higashiyodogawa－Ku，Osaka，J apan．
〒533－0021 TEL．06（6328）1700－5 FAX 06（6328） 4112
Toyama Factory
1－6－2，Yasuuchi，Yatsuo－machi，Nei－gun，Toyama．
〒 939－2366 TEL．0764（55） 2008 FAX 0764（55） 2005
TokyoFactory．
8－47－27，Shin－Yoshidahigashi，Kohhoku－Ku，Yokohama．
〒 223－0058 TEL．045（542） 3453 FAX． 045 （541）9989

Please consult with our Foreign TradeDept．TEL 81＋6－6329－2441
FAX 81＋6－6328－4112

[^0]: Continues to the next page.

